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Intro & Background
• A probabilistic program defines a probabilistic model p(x, z) that factorizes as
p(x, z) = p(x|z)

∏n
i=1 p(zi|z<i), where x are observations and z latent variables

or parameters. Problem: posterior p(z|x) is hard to compute. Two solutions:

Markov Chain Monte Carlo (MCMC):
• Inference as sampling: Markov

chain towards posterior distribution
in the limit.

• Problem: scalability, slow mixing.
• SGLD [Welling and Teh, 2011]:
zt+1 ← zt − ηt∇ log p(zt, x) +
N (0, 2ηtI).

• SGLD+R [Gallego and Rios Insua,
2018]: add interaction term to
speed up mixing.

Variational Inference (VI):

• Inference as optimization: Min-
imize divergence KL(q||p) be-
tween true posterior p(z|x) and a
tractable family q(z|x) (eg: mean
field Gaussian).

• SVI: Maximize ELBO(q) =
Eqφ(z|x) [log p(x, z)− log qφ(z|x)]

• Problem: bias, underestimation of
uncertainty.

Goal: propose a variational approximation, that is flexible enough (i.e., the user can
control its accuracy by using more computing time).

The VIS framework
The refined variational approximation is given by

qφ,η(z|x) =
∫
Qη(z|z0)q0,φ(z0|x)dz0

– q0,φ(z|x) is the initial and tractable density (diagonal Gaussian).
– Qη(z|z0) refers to a stochastic process parameterized by η used to evolve the

original density q0,φ(z|x).
– Think of Qη(z|z0) as T iterations of an MCMC transition kernel, for example

SGLD (see at Background section).

• Since the resulting distribution is
implicitly defined by the sampler,
its density is not available to us.

• qφ,η(z|x) is approximated using
a finite set of particles (each
treated as a Dirac Delta distribu-
tion):
q̃φ,η(z|x) = 1

K

∑K
i=1 δ(z − zi)

• Convergence results in the paper.

(Hyper)parameter tuning via autodiff

• Since we have embedded the sam-
pler inside a variational approxima-
tion, we can optimize wrt the
sampler parameters:

• Initial distribution of the sampler:
∇φELBO(q), learns good starting
points.

• Sampler parameters: ∇ηELBO(q),
learns learning rate.

Experiments
State space models

• Hidden Markov Model: p(z1:T , x1:T , θ) =∏T

t=1
p(xt|zt, θ)p(zt|zt−1, θ)p(θ).

• Experiments on a synthetic time-series for
100 different random initializations of θ.

• Dynamic Linear Model: same structure as
HMM but with Gaussian latents and obser-
vations. We use the Mauna Loa monthly
CO2 time series data. As the training set,
we take the first 10 years, and we evaluate
over the next 2 years:

• VIS helps in predicting uncertainty.

Variational Autoencoder (VAE)
• Problem: learn a complex, high-dimensional

data distribution p(x).
• Datasets: MNIST and fashion-MNIST:

60000 28 × 28 images each.
• VAE as the model:

– pθ(x|z) is a deep neural network
(generates the pixels)

– qφ(z|x) is a diagonal Gaussian whose
mean and variance is parameterized
by a deep neural network.

• We compare the VIS framework, specifying
different values of T .

• Mean times (s) per epoch: 10.30 ( T = 5 ),
6.52 ( T = 0 ) (on GPU).

• For fair comparisons, VIS-5-10 was run for
10 epochs; all others for 20 epochs.

Conclusions
• VIS uses variational inference techniques to

speed up a MCMC sampler. If you prefer,
it uses MCMC to make VI more accurate.

• The user can naturally tradeoff compute for
better accuracy.

• Autotuning MCMC parameters via autodiff.
• Only requires a standard automatic differen-

tiation library (coded in Pytorch).

slides & poster at
https://vicgalle.github.io


