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Intro & Background

o A probabilistic program defines a probabilistic model p(z, z) that factorizes as
p(z,z) = p(x|2) [T\, p(2i|2<:), where x are observations and z latent variables
or parameters. Problem: posterior p(z|z) is hard to compute. Two solutions:

Markov Chain Monte Carlo (MCMC): Variational Inference (VI):

e Inference as sampling:  Markov e Inference as optimization: Min-
chain towards posterior distribution imize divergence K L(qg||p) be-
in the limit. B . tween true posterior p(z|r) and a

e Problem: scalability, slow mixing. tractable family ¢(z|z) (eg: mean

e SGLD [Welling and Teh, 2011]: field Gaussian).

21 2= pVIogp(z, ) + ¢ SVI: Maximize ELBO(g) =
MO, Zn.1). | By o) logp(z, ) — og g5 (/o)

* SGLD+R [Gallego and Rios Insua, e Problem: bias, underestimation of
2018]: add interaction term to uncertainty.

speed up mixing.

Goal: propose a variational approximation, that is flexible enough (i.e., the user can
control its accuracy by using more computing time).

The VIS framework

The refined variational approximation is given by

Gon(2l) = / Qu(z120)00.0(z0l)d20

— qo,p(2|z) is the initial and tractable density (diagonal Gaussian).

— @y (2]20) refers to a stochastic process parameterized by 7 used to evolve the
original density o ¢(z|z).

— Think of Q,(2]z9) as T iterations of an MCMC transition kernel, for example
SGLD (see at Background section).

e Since the resulting distribution is (Hyper)parameter tuning via autodiff
implicitly defined by the sampler,
its density is not available to us.

® gyn(z|z) is approximated using
a finite set of particles (each
treated as a Dirac Delta distribu-
tion):

Gpn(2]7) = % X1, 8(2 = 27)
e Convergence results in the paper.

e Since we have embedded the sam-
pler inside a variational approxima-
tion, we can optimize wrt the
sampler parameters:

e Initial distribution of the sampler:
V4+ELBO(q), learns good starting
points.

e Sampler parameters: V,ELBO(q),
learns learning rate.

Experiments

State space models

e Hidden Markov Model: p(z1.7,z1.7,0) =
T
[1._, p(=elze, 0)p(zi]2—1, 0)p(6).

t=1

e Experiments on a synthetic time-series for
100 different random initializations of 6.

o Dynamic Linear Model: same structure as
HMM but with Gaussian latents and obser-
vations. We use the Mauna Loa monthly
CO4 time series data. As the training set,
we take the first 10 years, and we evaluate
over the next 2 years:

T=0 T=1
MAE 0.270  0.239
predictive entropy 2.537  2.401

interval score (o = 0.05) 15.247 13.461

e VIS helps in predicting uncertainty.

Variational Autoencoder (VAE)

o Problem: learn a complex, high-dimensional
data distribution p(z).

e Datasets: MNIST and fashion-MNIST:
60000 28 x 28 images each.

o VAE as the model:

— po(x|z) is a deep neural network
(generates the pixels)

— q¢(z|x) is a diagonal Gaussian whose
mean and variance is parameterized
by a deep neural network.

e We compare the VIS framework, specifying
different values of T'.

Table 3: Test log-likelihood on binarized MNIST and M-
NIST.

Method

Results from (Titsias and Ruiz 2019)
UIVI —94.09 —110.72
SIVI —97.77 —121.53
VAE —98.29 —126.73
VIS-5-10 (this paper) —86.23 £0.80 —105.92 +0.49
VIS-0-10 (this paper) ~ —96.16 £+ 0.17 —120.53 £0.59
VAE (VIS-0-0) —100.91 +0.16 —125.57 £ 0.63

e Mean times (s) per epoch: 10.30 (7T'=5),
6.52 (T =0) (on GPU).

e For fair comparisons, VIS-5-10 was run for
10 epochs; all others for 20 epochs.

Conclusions

e VIS uses variational inference techniques to
speed up a MCMC sampler. If you prefer,
it uses MCMC to make VI more accurate.

o The user can naturally tradeoff compute for
better accuracy.
o Autotuning MCMC parameters via autodiff.

e Only requires a standard automatic differen-
tiation library (coded in Pytorch).
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