We propose a refined variational approximation by embedding a MCMC sampler inside it, accelerating Bayesian inference

Variationally Inferred Sampling for Probabilistic Programs

Victor Gallego and David Rios Insua

Intro & Background

• A probabilistic program defines a probabilistic model p(x, z) that factorizes as $p(x, z) = p(x|z) \prod_{i=1}^{n} p(z_i|z_{<i})$, where x are observations and z latent variables or parameters. Problem: posterior p(z|x) is hard to compute. Two solutions:

Markov Chain Monte Carlo (MCMC): Variational Inference (VI):

- Inference as sampling: Markov chain towards posterior distribution in the limit.
- Problem: scalability, slow mixing.
- SGLD [Welling and Teh, 2011]: $z_{t+1} \leftarrow z_t - \eta_t \nabla \log p(z_t, x) + \mathcal{N}(0, 2\eta_t I).$
- SGLD+R [Gallego and Rios Insua, 2018]: add interaction term to speed up mixing.
- Inference as **optimization**: Minimize divergence KL(q||p) between true posterior p(z|x) and a tractable family q(z|x) (eg: mean field Gaussian).
- SVI: Maximize $ELBO(q) = E_{q_{\phi}(z|x)} [\log p(x, z) \log q_{\phi}(z|x)]$
- Problem: bias, underestimation of uncertainty.

Goal: propose a variational approximation, that is flexible enough (i.e., the user can control its accuracy by using more computing time).

The VIS framework

The refined variational approximation is given by

$$q_{\phi,\eta}(z|x) = \int Q_{\eta}(z|z_0) q_{0,\phi}(z_0|x) dz_0$$

- $q_{0,\phi}(z|x)$ is the initial and tractable density (diagonal Gaussian).
- $Q_{\eta}(z|z_0)$ refers to a stochastic process parameterized by η used to evolve the original density $q_{0,\phi}(z|x)$.
- Think of $Q_{\eta}(z|z_0)$ as T iterations of an MCMC transition kernel, for example SGLD (see at Background section).
- Since the resulting distribution is implicitly defined by the sampler, its density is not available to us.
- $q_{\phi,\eta}(z|x)$ is approximated using a **finite set of particles** (each treated as a Dirac Delta distribution):

 $\tilde{q}_{\phi,\eta}(z|x) = \frac{1}{K} \sum_{i=1}^{K} \delta(z-z^i)$

Convergence results in the paper.

IOMAT

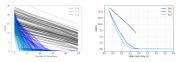
(Hyper)parameter tuning via autodiff

- Since we have embedded the sampler inside a variational approximation, we can **optimize wrt the sampler parameters**:
- Initial distribution of the sampler: $\nabla_{\phi} \text{ELBO}(q)$, learns good starting points.
- Sampler parameters: $\nabla_{\eta} \text{ELBO}(q)$, learns learning rate.

Experiments

State space models

- Hidden Markov Model: $p(z_{1:T}, x_{1:T}, \theta) = \prod_{t=1}^{T} p(x_t | z_t, \theta) p(z_t | z_{t-1}, \theta) p(\theta).$
- Experiments on a synthetic time-series for 100 different random initializations of *θ*.



• Dynamic Linear Model: same structure as HMM but with Gaussian latents and observations. We use the Mauna Loa monthly CO₂ time series data. As the training set, we take the first 10 years, and we evaluate over the next 2 years:

	T = 0	T = 1
MAE	0.270	0.239
predictive entropy	2.537	2.401
interval score ($\alpha = 0.05$)	15.247	13.461

• VIS helps in predicting uncertainty.

Variational Autoencoder (VAE)

- Problem: learn a complex, high-dimensional data distribution p(x).
- Datasets: MNIST and fashion-MNIST: 60000 28 \times 28 images each.
- VAE as the model:
 - $p_{\theta}(x|z)$ is a deep neural network (generates the pixels)
 - $q_{\phi}(z|x)$ is a diagonal Gaussian whose mean and variance is parameterized by a deep neural network.
- We compare the VIS framework, specifying different values of $T. \label{eq:compared}$

Method	MNIST	fMNIST
Resu	lts from (Titsias and Ruiz	2019)
UIVI	-94.09	-110.72
SIVI	-97.77	-121.53
VAE	-98.29	-126.73
VIS-5-10 (this pape	r) -86.23 ± 0.80	-105.92 ± 0.4
VIS-0-10 (this pape	r) -96.16 ± 0.17	-120.53 ± 0.5
VAE (VIS-0-0)	-100.91 ± 0.16	-125.57 ± 0.6

- Mean times (s) per epoch: 10.30 (T = 5), 6.52 (T = 0) (on GPU).
- For fair comparisons, VIS-5-10 was run for 10 epochs; all others for 20 epochs.

Conclusions

- VIS uses variational inference techniques to speed up a MCMC sampler. If you prefer, it uses MCMC to make VI more accurate.
- The user can naturally tradeoff compute for better accuracy.
- Autotuning MCMC parameters via autodiff.
- Only requires a standard automatic differentiation library (coded in Pytorch).