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RL success story

Disclaimer: focus on Reinforcement Learning (RL).
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The problem

• Reinforcement Learning (RL) is more than playing Go...

• Applications of RL are continuously growing.

• Some applications in settings where security issues are

crucial (autonomous driving)...

• ...where there could be adversaries that interfere the reward

generating process.

Traditional single-agent RL fails...

...as it does not take into account the presence of other agents.
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Quick review of RL

• RL is a computational approach to Markov Decision

Processes (MDP).

• MDP models a single agent (decision maker, DM) making

decisions sequentially while interacting with an environment.
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Quick review of RL

• Agent aims at finding the policy maximizing

long term discounted expected utility.

Eτ

[ ∞∑
t=0

γtr(at , st)

]

• Q-learning is an efficient approach to this problem: agent

sequentially estimates the expected cumulative reward (utility)

through

Q(s, a) := (1− α)Q(s, a) + α

(
r(s, a) + γmax

a′
Q(s ′, a′)

)
• If environment is stationary, this converges to the optimal

policy, under some conditions, Sutton & Barto (2018).

• Optimal policy p(a|s): arg maxa Q(s, a) with 1− ε prob.
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Our objective

• If there are adversaries interfering with the reward process,

Q-learning fails.

• We need to reason about and forecast the adversaries’

behaviour.

• Previous work has studied how to model the whole

multi-agent system through Markov Games, with strong

common knowledge assumptions, or too restrictive (i.e.,

minimax Q-learning).

• We focus on the problem of prescribing decisions to a single

agent in adversarial, non-stationary RL settings, accounting

for the lack of information. That is, we adapt the

Adversarial Risk Analysis framework to RL.

6



Our objective

• If there are adversaries interfering with the reward process,

Q-learning fails.

• We need to reason about and forecast the adversaries’

behaviour.

• Previous work has studied how to model the whole

multi-agent system through Markov Games, with strong

common knowledge assumptions, or too restrictive (i.e.,

minimax Q-learning).

• We focus on the problem of prescribing decisions to a single

agent in adversarial, non-stationary RL settings, accounting

for the lack of information. That is, we adapt the

Adversarial Risk Analysis framework to RL.

6



Our objective

• If there are adversaries interfering with the reward process,

Q-learning fails.

• We need to reason about and forecast the adversaries’

behaviour.

• Previous work has studied how to model the whole

multi-agent system through Markov Games, with strong

common knowledge assumptions, or too restrictive (i.e.,

minimax Q-learning).

• We focus on the problem of prescribing decisions to a single

agent in adversarial, non-stationary RL settings, accounting

for the lack of information. That is, we adapt the

Adversarial Risk Analysis framework to RL.

6



From MDPs to TMDPs

• Our strategy: augment MDPs to account for adversaries

whose actions modify state and reward dynamics.

• TMDP: Threatened Markov Decision Processes

• We restrict to the single-adversary case.

• Key element: pA(b|s).
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Extending Q-learning to TMDPs

• Modified Q-learning rule:

Q(s, a, b) := (1− α)Q(s, a, b)

+ α

(
r(s, a, b) + γmax

a′
EpA(b|s′)

[
Q(s ′, a′, b)

])

• To choose actions, we compute:

Q(s, a) := EpA(b|s) [Q(s, a, b)] .

and choose a∗ = arg maxa Q(s, a) with probability 1− ε or an

action uniformily at random with probability ε.

• The DM will learn both Q(s, a, b) and pA(b|s).
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Modelling the adversary

• No common knowledge ⇒ uncertainty about adversary policy,

modelled through pA(b|s).

• How to learn pA(b|s)?
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Non strategic opponent

• Let’s call pj |s the probability of the adversary taking action bj

in state s.

• Place a Dirichlet prior (p1|s, . . . , pn|s) ∼ D(α1(s), . . . , αn(s)).

• The posterior is D(α1(s) + h1(s), . . . , αn(s) + hn(s)), where

hi (s) counts how many times did the adversary took action i

in state s.

• The DM would choose the action maximizing

ψs(ai ) = EpA(|S)[Q(s, ai , b)] ∝
∑
bj∈B

Q(s, ai , bj)(αj(s) + hj)
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Level-k thinking

• If the opponent is strategic, he may model us as non-strategic

players (level-0), making himself a level-1 thinker...

• How to model a level-k thinker?

• Let’s call TMDPk
i the TMDP agent i needs to optimize if

considering his rival a level-(k − 1) thinker.
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Level-k thinking

• To optimize TMDPk
A, the DM keeps an estimate Q̂k−1 of her

opponent’s Q-function.

• This could be computed optimizing TMDPk−1
B , and so on

until k = 1.

• k = 1 could be solved the non-strategic opponent model.

• The top level DM’s policy is given by

arg max
aik

Qk(s, aik , bjk−1
)

where bjk−1
is given by

arg max
bjk−1

Q̂k−1(s, aik−2
, bjk−1

)
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Combining opponents

• In several situations, we do not have information about the

actual opponent model.

• We could place a Dirichlet prior p(Mi ) on the opponent

model.

Opponent average updating

Require: p(M|H) ∝ (n1, n2, . . . , nm), where H is the sequence

(b0, b1, . . . , bt−1) of past opponent actions.

1. Observe transition (st , at , bt , rA,t , rB,t , st+1).

2. For each Mi , sample bi ∼ pMi (b|s).

3. If bi = bt then update posterior:

p(M|(H||bt)) ∝ (n1, . . . , ni + 1, . . . , nm)
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Experiments

• Friend or foe RL security benchmark.

• The DM needs to travel a room and choose between two

identical boxes, hiding positive and negative, respectively.

• Reward assignment controlled by adaptive adversary.
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Experiments - Stateless Variant

• No state in this case.

• The adaptive opponent estimates the DM’s actions using an

exponential smoother.

• p = (p1, p2) are the DM’s probabilities (according to the

adversary), of choosing 1 or 2.

p := βp + (1− β)a,

• Adversary places its reward at target t = arg mini (p)i .
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Experiments - Stateless Variant

Figure 1: Level 2 and Level 1 vs Exponential Smoother
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Experiments - More powerful adversaries

Figure 2: Level 3 with opponent averaging vs Level 1
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Experiments - More powerful adversaries

Figure 3: DM’s beliefs that her opponent is level-1
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Experiments - Spatial Variant

• ±50 reward depending on chosen target.

• Each step taken, penalized with reward −1.
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Experiments - Spatial Variant

Figure 4: Level 2 and Independent Q learner vs Exponential Smoother
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Experiments - Spatial Variant

Figure 5: DM with opponent models for a Level 1 and a Level 2 vs

Exponential Smoother 22



Conclusions and future work

• We have introduced TMDPs, a framework to provide

one-sided prescriptive support to a RL agent who confront

adversaries that interfere with the reward process.

• Suitable framework to use existing opponent modelling

methods within Q-learning.

• Level-k reasoning scheme about opponents. We extend this

approach to account for uncertainty about the opponent’s

model.

• Empirically, we see that the framework generalizes between

different kinds of opponents!!

• More than one adversaries!

• Deep Q-networks instead of tabular Q-learning
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Thank you!

victor.gallego@icmat.es

roi.naveiro@icmat.es

23



Experiments - More powerful adversaries

Figure 6: Level 2 vs Level 2

24



Experiments - More powerful adversaries

Figure 7: Level 3 vs Level 2
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Experiments - More powerful adversaries

Figure 8: Level 3 vs Level 1
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