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The problem

Reinforcement Learning (RL) is more than playing Go...

Applications of RL are continuously growing.

Some applications in settings where security issues are

crucial (autonomous driving)...

...where there could be adversaries that interfere the reward

generating process.

Traditional single-agent RL fails...

...as it does not take into account the presence of other agents.



Quick review of RL

e RL is a computational approach to Markov Decision
Processes (MDP).

e MDP models a single agent (decision maker, DM) making
decisions sequentially while interacting with an environment.

Transition: s, | st at
Action : a;

Reward: r;| s, a;



Quick review of RL

e RL is a computational approach to Markov Decision
Processes (MDP).

e MDP models a single agent (decision maker, DM) making
decisions sequentially while interacting with an environment.

oy



Quick review of RL

e Agent aims at finding the policy maximizing
long term discounted expected utility.

E’th(atast)]
t=0

E,




Quick review of RL

e Agent aims at finding the policy maximizing
long term discounted expected utility.
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e Q-learning is an efficient approach to this problem: agent

E,

sequentially estimates the expected cumulative reward (utility)
through

Q(s,a) == (1 — a)Q(s,a) + « (r(s, a) +v max Q(s', a’)>

e |f environment is stationary, this converges to the optimal
policy, under some conditions, Sutton & Barto (2018).
e Optimal policy p(als): arg max, Q(s, a) with 1 — € prob.
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e If there are adversaries interfering with the reward process,

Q-learning fails.

e We need to reason about and forecast the adversaries’

behaviour.

e Previous work has studied how to model the whole
multi-agent system through Markov Games, with strong
common knowledge assumptions, or too restrictive (i.e.,
minimax Q-learning).

e We focus on the problem of prescribing decisions to a single
agent in adversarial, non-stationary RL settings, accounting
for the lack of information. That is, we adapt the
Adversarial Risk Analysis framework to RL.
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From MDPs to TMDPs

e Qur strategy: augment MDPs to account for adversaries
whose actions modify state and reward dynamics.

e TMDP: Threatened Markov Decision Processes

e We restrict to the single-adversary case.

e Key element: pa(b|s).

Transition : s,,; | s, az, by pab|s)
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From MDPs to TMDPs

e Qur strategy: augment MDPs to account for adversaries
whose actions modify state and reward dynamics.
e TMDP: Threatened Markov Decision Processes
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Extending Q-learning to TMDPs

e Modified Q-learning rule:
Q(57 a, b) = (]‘ - Oé)Q(S, a, b)

+a (r(s, a,b) +ymaxE,, ps) [Q(s, 4, b)])
a

e To choose actions, we compute:

Q(Sa a) = EPA(b|S) [Q(Sv a, b)] :

and choose a* = arg max, Q(s, a) with probability 1 — € or an
action uniformily at random with probability €.

e The DM will learn both Q(s, a, b) and pa(bls).



Modelling the adversary

e No common knowledge =- uncertainty about adversary policy,
modelled through pa(b|s).

e How to learn pa(b|s)?

10



Non strategic opponent

e Let's call pj|s the probability of the adversary taking action b;
in state s.

e Place a Dirichlet prior (pi|s, ..., pn|s) ~ D(a1(s), ..., an(s)).

e The posterior is D(a1(s) + hi(s), ..., an(s) + ha(s)), where
hi(s) counts how many times did the adversary took action i
in state s.
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e Let's call pj|s the probability of the adversary taking action b;
in state s.

e Place a Dirichlet prior (pi|s, ..., pn|s) ~ D(a1(s), ..., an(s)).

e The posterior is D(a1(s) + hi(s), ..., an(s) + ha(s)), where
hi(s) counts how many times did the adversary took action i
in state s.

e The DM would choose the action maximizing

vs(ai) =R, (5Qs,ai, b)] o< Y Q(s, ai, bj)(aj(s) + hy)

bjEB
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Level-k thinking

e |f the opponent is strategic, he may model us as non-strategic
players (level-0), making himself a level-1 thinker...

e How to model a level-k thinker?
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Level-k thinking

e |f the opponent is strategic, he may model us as non-strategic
players (level-0), making himself a level-1 thinker...

e How to model a level-k thinker?

e Let's call TI\/IDP,-" the TMDP agent i needs to optimize if
considering his rival a level-(k — 1) thinker.
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Level-k thinking

e To optimize TMDPX, the DM keeps an estimate Qu_1 of her
opponent’s Q-function.

e This could be computed optimizing TI\/IDPg_l, and so on
until kK = 1.

e k =1 could be solved the non-strategic opponent model.
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Level-k thinking

e To optimize TMDPX, the DM keeps an estimate Qu_1 of her
opponent’s Q-function.

e This could be computed optimizing TI\/IDPg_l, and so on
until kK = 1.

e k =1 could be solved the non-strategic opponent model.

e The top level DM's policy is given by

arg max Qi(s. ai, bj,_,)
'k

where b, |

is given by

arg max Qk—1(s, i, bj )
ik—1

13



Combining opponents

e In several situations, we do not have information about the

actual opponent model.
e We could place a Dirichlet prior p(M;) on the opponent

model.

Opponent average updating
Require: p(M|H)  (n1,na,...,nm), where H is the sequence
(bo, b1, ..., bt—1) of past opponent actions.

1. Observe transition (s, ar, be, rat, Bt St+1)-
2. For each M;, sample b’ ~ py.(bls).
3. If b’ = b, then update posterior:

p(M|(H||b:)) o< (ny,...,ni+1,....0y)
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e Friend or foe RL security benchmark.

e The DM needs to travel a room and choose between two
identical boxes, hiding positive and negative, respectively.

e Reward assignment controlled by adaptive adversary.

15



Experiments - Stateless Variant

No state in this case.

The adaptive opponent estimates the DM’s actions using an

exponential smoother.

e p = (p1,p2) are the DM’s probabilities (according to the

adversary), of choosing 1 or 2.
p:=pp+(1-0)a,

Adversary places its reward at target t = arg min;(p);.
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Experiments - Stateless Variant
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Figure 1: Level 2 and Level 1 vs Exponential Smoother
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Experiments - More powerful adversaries

a0 -
20 -
. —— Agent A
= b —— AgentB
M
| 1
-20- i
v
I miﬁww
—40
0 2000 4000 £000 8000 10000
t

Figure 2: Level 3 with opponent averaging vs Level 1



Experiments - More powerful adversaries
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Figure 3: DM'’s beliefs that her opponent is level-1
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Experiments - Spatial Variant

e 150 reward depending on chosen target.

e Each step taken, penalized with reward —1.
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Experiments - Spatial Variant
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Figure 4: Level 2 and Independent Q learner vs Exponential Smoother
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Experiments - Spatial Variant
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Figure 5: DM with opponent models for a Level 1 and a Level 2 vs
Exponential Smoother 2



Conclusions and future work

e We have introduced TMDPs, a framework to provide
one-sided prescriptive support to a RL agent who confront
adversaries that interfere with the reward process.

e Suitable framework to use existing opponent modelling
methods within Q-learning.

e Level-k reasoning scheme about opponents. We extend this

approach to account for uncertainty about the opponent’s
model.

e Empirically, we see that the framework generalizes between
different kinds of opponents!!
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Conclusions and future work

e We have introduced TMDPs, a framework to provide
one-sided prescriptive support to a RL agent who confront
adversaries that interfere with the reward process.

e Suitable framework to use existing opponent modelling
methods within Q-learning.

e Level-k reasoning scheme about opponents. We extend this
approach to account for uncertainty about the opponent’s
model.

e Empirically, we see that the framework generalizes between
different kinds of opponents!!

e More than one adversaries!

e Deep Q-networks instead of tabular Q-learning

23
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victor.gallego@icmat.es
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Experiments - More powerful adversaries
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Figure 6: Level 2 vs Level 2
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Experiments - More powerful adversaries
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Experiments - More powerful adversaries
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Figure 8: Level 3 vs Level 1
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