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Goals and Intro

Bridge the gap between dynamical systems and ML methods?
A case study with time series data:
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Predict sales Y; for the Krusty Burger company week after week.

Few weekly observations. Predictor variables:
Economical: IPC, ICC, unemployment rate...
Climate: temperature, precipitation...
Special events: holiday, sports...
Investment levels (advertising channels): Out-of-home,
Radio, TV, Online, ...
Objective: Help Krusty Burger choose its media plan
for the next week.

Background

ARIMA models. Traditional tool in econometrics:
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After some baselines, results were not as good as we expected.
We needed more interpretable models which can take into
account experts' beliefs.
Dynamic Linear Models (DLMs) come in handy: modular
design.
Observation eq.:
Y, = F.0, + ¢
State eq.:
O: 11 = Gib: + Hye, e, ~ N (0, W,)
Bayesian Structural Time Series (BSTS): slightly more general.
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Nerlove-Arrow model as a linear ODE:

dA
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with A(t) being the goodwill and u(t) the advertising spending
rate.

Model construction

We discretize the N-A model, allowing for k different channels

k
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Now, we may frame it as a DLM!
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Model augmentation and inference

Via the superposition principle we can specify the model
Yt — YNA,t -+ YT,t -+ TS,t T YR,t

where

Yna.¢ 1s the discretization of the N-A model from before.
YT ; is a trend component (local level model).

Y5+ is the seasonal part (period 52).

Yr : are explanatory variables.

For the regression component
YRt = X0 + €, €t N(Ov 02)

, we use a spike and slab prior that is expressed as

p(B,7, %) = p(By]7: o*)p(a®|7)p(7).
with Vi = 1 iff 5,’ 7é 0.
A usual choice for the ~ prior is a product of Bernoulli
distributions:

/ 1— i
Yo |_|,7T7(]. — 7T,') 7.
Making the model more robust: we can replace the assumption
of gaussian errors with student T errors

Yt — Ftet -+ €t €Er N 7;(0, 7_2).

Inference using MCMC (Gibbs sampler). Obtains draws
o) p2) oK) from the posterior distribution, then the usual
predictive equation

p(7|y1e) / p(719)p(plys)dp.

Decision Support System

maximize E[.)_/H—ll)/l:ta Xt+1, Ut+1]
Uit+1),1---U(t+1),k

k
subject to Z Uges1)i < bey1
=1
_ 2
Va"[)’t+1b’1:taxt+1> Ut+1] < 07,

where b; is the total budget and o controls the risk.
Used to evaluate an initial set of investment plans.

Experiments and Results

Our best variant achieved

100% ~— |yt — 9|
MAPE = ~ 4.59%,

One-step-ahead predictions
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Conclusions

DLM (BSTS) can provide a nice framework to mix dynamical
systems and data-driven models.

The firm can optimize in the investment levels, maximizing
expected global sales yet minimizing a risk metric.
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